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LETTER TO THE EDITOR 

Long-range percolation in one dimension 

Z Q Zhang, F C Pu and B Z Li 
Institute of Physics, Chinese Academy of Sciences, Beijing, China 

Received 3 November 1982 

Abstract. The problem of long-range percolation in one dimension is proposed. We 
consider a one-dimensional bond percolation system with bonds connecting an infinite 
number of neighbours where the occupation probability for the nth nearest-neighbour 
bond pn varies as pl /ns .  Using the transfer-matrix method, we find that when s > 2 only 
the short-range percolation exists; namely, the system percolates only when p1 = 1. A 
transition to long-range percolation is found at s = 2 where the percolation threshold 
drops suddenly from the short-range value pT = 1 to the long-range value pT = 0. 

In the past decade, the percolation problem (for reviews see Stauffer 1979 and Essam 
1980) has aroused considerable interest because of its close relationship with the 
thermal critical phenomena (Kasteleyn and Fortuin 1969). Percolation in one- 
dimensional systems is one of the few cases where exact solutions can be obtained. 
Recently both site and bond percolation in one dimension with bonds connecting Lth 
nearest neighbours have been solved by various methods, including the generating 
function (Klein et a1 1978), the renormalisation group (Reynolds et a1 1980 and Li 
et a1 1983) and the transfer-matrix methods (Zhang and Shen 1982, Zhang et a1 
1983). Although the critical percolation probability is trivial in one dimension, the 
critical exponents are found to be L-dependent. Such a ‘bond range’ dependence of 
the critical behaviour is related to the corresponding ‘thermal’ problem with multi-spin 
interaction (Klein et a1 1978). 

In this letter, we propose a problem of long-range percolation in one dimension. 
We consider a one-dimensional bond percolation system with bonds connecting an 
infinite number of neighbours. If the occupation probability for the nth nearest- 
neighbour bond pn varies as p l / n S ,  then the following question can be asked. For any 
given value of p1 in the range 0 <PI < 1, is there a critical value s,(pl) of s such that 
the system can percolate without requiring p1 = l? .  This problem is analogous to the 
famous one-dimensional king ferromagnet with an interaction energy which varies 
as J ( n )  = n-”. For this model, it is well known that the system is completely ordered 
at all temperatures for 0 sa s 1, and disordered at all temperatures for Q > 2 (Ruelle 
1968). Dyson (1969) has proved that a phase transition exists for 1 <CY <2. The 
existence of a transition for Q = 2 has been conjectured by Thouless (1969) and was 
proved very recently by Frohlich and Spencer (1982). 

Before discussing the long-range percolation, we first consider a one-dimensional 
bond percolation system with bonds connecting Lth nearest neighbours. The critical 
behaviours of such a system can be found by using the transfer-matrix method (Zhang 
and Shen 1982, Zhang et a1 1983). Here we only give a brief account of the method; 
further details may be found in the original papers. 
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We divide the chain into overlapping columns each containing L sites. If we take 
the sites 1,2, . . , , L - 1 and L as the Nth column, then the ( N  + 1)th column contains 
sites 2 , 3 , .  . . , L and (L  + 1) (for L = 3, see figure 1). To each ith site of the Nth 
column, we assign a value mi which has the value 1 or 0 depending on whether the 
ith site is connected to or disconnected from the first column. If Pmlm,,,,mL(N) is the 
probability of being in the configuration (ml, mz, . . . , mL), then the transfer matrix 
T(=’, with dimensionality 2= x 2=, is defined by 

0 1 2 3 5 

N 

Figure 1. A linear chain with bonds connecting third nearest neighbours (L = 3). Sites 
( 1 , 2 , 3 )  and (2,3,4)  are taken to be the Nth and ( N  + 1)th columns respectively. 

The correlation length 5 is related to the largest nontrivial eigenvalue A If;’ of the 
transfer matrix by the relation (Derrida and Vannimenus 1980) 

The critical percolation is given by the condition A If;’ = 1 where the correlation length 
becomes infinite. Writing pi as the occupation probability for the ith nearest-neighbour 
bond and 4i = 1 -pi, the transfer matrix T‘=’ in (1) has the following form 

Using the proper labelling procedure, (3) can be cast into a systematic duo-diagonal 
form (Domb 1949). When L = 3, the transfer matrix T‘3’ has the form 
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For any L, T‘=’ has the form 

1 0 0 . . .  o x o  . . .  0 0 
0 
0 

T ‘ L ’ =  , (Ll 

0 1; 0 

where R‘L’ is a matrix of dimensionality (ZL - 1) x (2L - 1). The largest nontrivial 
eigenvalue A E 1  of T‘L’ is thus the largest root of the characteristic equation of 
R‘L’: det(R‘L’-AI) =A‘L’(A ; 41, q2, . . , , qL) = 0. In the most general case, the matrix 

is irreducible. From the Perron-Frobenius theorem, we know that the largest 
root of a non-negative irreducible matrix is non-degenerate (Rosenblatt 1962). We 
can write 

(6) 

(7) 

~ ( ~ ’ ( ~ ; q ~ , q ~ ,  . . . , q r ) ’ ~ ( L ’ ( ~ ; 4 ) = ( ~ ( m L ’ - ~ ) ~ ( L ’ ( ~ ;  4). 

A F) = 1 + [A‘L’( 1 ; q)/B‘=’( 1 ; q ) ] .  

Putting A = 1 in (6), we have 

It is extremely difficult to find the explicit expressions of the functions A‘=’(l; q )  and 
B‘L’(l; q) for general L. However, some properties of these functions are known. 
We have proved rigorously that, for any given L, A‘=’(1; q) has the following form 

A‘L’(l, 4 )  = -414: qZ(1 +qifr(q)). (8) 
The proof of (8) which is rather long and complicated will be given elsewhere. Since 
T‘L’ is a stochastic matrix, all the eigenvalues A Y ’  have the property IA i“’ 1 s 1 (Pearl 
1973). Excluding the trivial A = 1 and A z’, B‘L’(A ; q) contains all the other 2L - 2  
roots. Except for some special cases where the system can be decoupled into many 
independent chains, it can be shown that both the functions B‘=’(l; q) and (1 +qlfL(q)) 
are positive. From (2), (7) and (8), expanding In A If;’ to the lowest order in q, we have 

(9) 

(10) 

6 = (414; * * * 4Z)-1[B‘L’(1; 4)/(1 +4lfL(4))1. 

g(q)  =414: * * 4 L  = 0. 

The critical surface is then given by 
L 

Various correlation length exponents v can be obtained by approaching the critical 
surface in different ways. For instance, if we let all the q’s  be equal then we have 
v = (1 + 2 + 3 + + L )  = L(L + 1)/2. This result has been obtained previously by 
Zhang et a1 (1983) and Li et a1 (1983). When all the q’s are independent, very many 
critical phenomena can be found. This has been studied in detail for L s 3 (Zhang 
and Shen 1982) and can now be generalised to the case of general L. 

When the system can be decoupled into many independent chains, the functions 
B‘L’(l; q)  and (1 +qfr(q)) might become zero. For instance, when only one of the 
q’s,  say q i  (i = 2 ,3 ,  . I . , L ) ,  is not equal to 1 while all the other q’s are equal to 1, 
the system is decoupled into i independent chains with nearest-neighbour bonds only. 
In these cases, both the functions B‘L’(l; q )  and (1 +qlfL(q)) might contain factors 
of qi to certain powers which cancel the 4; factor in front and give the correct exponent 
v = 1. Except for those cases described above, Y is determined solely by the factor g(@. 
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To study the possibility of long-range percolation, we first assume that the occupa- 
tion probability of the nth nearest-neighbour bond pn varies as pl/n' and then let L 
go to infinity. Putting 4" = 1 -pl/n in (7), A ?) can be written as 

For any given L, this system can percolate only when p1 = 1 where A:' is equal to 1. 
As L goes to infinity, we define the functionsf(p1, s) and d(p1,  s )  as 

and A m  can be written as 

The existence of A m  in (13) can be seen from the following facts. As long as s is 
positive, p L  approaches zero when L goes to infinity. It can be proved that when 
p L  = 0 the characteristic equation of T'L' is simply the characteristic equation of T'L"' 
with additional zero root of order (2L -2L-') (i.e. A2=-' = 0). It is also known that 
when L is increased, additional bonds which are added to the system will increase 
the correlation length for any fixed values of p l  and s. So, A?)  is a monotonically 
increasing function of L and will approach a limiting value as L goes to infinity. 

Since Z(p1, s) is known explicitly, we can analyse its analytic properties. Taking 
the logarithm of Z ( p l ,  s), we have 

For any value of p1 in the range 0 <p1 < 1, it can be proved that the double sum in 
(15) diverges when s s 2 and converges when s > 2. When s > 2, changing the order 
of summation in (1 5 ) ,  we find 

where l ( x )  is the Riemann zeta function. Since the function l ( x )  has a simple pole 
at x = 1 with residue 1 in the entire complex plane x (Abramowitz and Stegun 1970), 
we find, from (16), that the singularity of -InZ(pl, s) at s = 2 is also a simple pole 
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with residue pl. Equivalently, the singularity of Z ( p l ,  s)  at s = 2 is an essential 
singularity of the form 

Zsing(P1, s)-exp[-pil(s -211. 
So, when s is greater than 2, we know, from (13) and (14), that the system can only 
percolate with p1 = 1 where A, = 1. As the value of s decreases to 2, because 
Z ( p l ,  2)=OandA, = l,thesystempercolatesforallvaluesofpl intherangeO<pl< 1. 
We call this a long-range percolation where the system percolates through an infinite 
number of long-range bonds without requiring that p1 = 1. Since the function D ( p l ,  s)  
is not known explicitly, we have assumed that D(p1, s) is analytic for all values of s 
in the region s 2 2. 

Comparing our results with the one-dimensional Ising ferromagnet with J ( n )  = n-’ 
interaction energy, it is interesting to see that the same critical value s = 2 is found 
in the percolation system where long-range percolation is realised. At this critical 
value, the percolation threshold p i  drops suddenly from the short-range value p i  = 1 
to the long-range value p i  = 0. The correspondence of p ?  = 0 in the k ing  problem is 
T, = 00 which is realised only when 0 s s s 1. The interesting region 1 < s s 2 of the 
Ising problem where the transition occurs at a finite temperature is not found in the 
percolation problem. 

In summary, using the transfer-matrix method, we have found the critical behaviour 
of a one-dimensional bond percolation system with bonds connecting Lth nearest 
neighbours. A long-range percolation model is proposed by assuming pn = pl/n and 
taking the L + m  limit. Our results show that when s > 2  only the short-range 
percolation exists; namely, the system percolates only when p1 = 1. A transition to a 
long-range percolation is found at s = 2 where the percolation threshold drops suddenly 
from the short-range value p i  = 1 to the long-range value p i  = O .  A transition at 
finite p ?  is not found in the percolation system. 

The authors would like to thank P M Lam for a careful reading of the manuscript. 
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